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We examine the representation of solvent effects by continuum models in the 
frame of the Reaction Field Theory. Particular attention is devoted to the 
problem raised by the adaptation of the current methods of Quantum 
Chemistry in the Self Consistent Field approximation especially at a semi- 
empirical level. 

A critical examination of the literature in the field shows that, for the main 
part, the proposed methods suffer from theoretical internal incoherence. 

As an illustration of this study, we propose an extension of the generalized 
Born formula which is able to account for the desolvation effects produced 
by the specific neighborhood of each center of the solvated species. 
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1. Introduction 

For a long time, the influence of a polarizable medium on the properties of a 
molecular system occupied the attention of the chemists. In the field of Quantum 
Chemistry, this problem has been encountered rather recently; however, consider- 
able effort has already been exerted on taking into account the solvent effects 
by modifying existing methods of calculation for isolated molecules [1, 2]. 
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In order  to simplify the theoretical approach, the solvent is often replaced by an 
homogeneous continuous medium characterized by its macroscopic dielectric 
constant e: the electrostatic interactions between the solute species and the 
solvent are accounted for by means of the Reaction Field (RF) theory [3]. In 
this respect, several techniques have been developed within the SCF method of 
calculation [4-15]. A common difficulty of such approaches comes from the fact 
that there are two different ways of defining the effective Fock operator  of the 
solute which takes into account the solvent influence. The first way consists in 
adding to the isolated solute Fock operator  a term representing the potential 
produced by the polarized solvent. The second one leads directly to the effective 
Fock operator  by applying the variation method. 

A survey of the recent literature in the field shows that, unless one proceeds 
rigorously, the operators obtained by these methods are different [16]. Most of 
the published work suffers from this internal incoherence and, to our knowledge, 
this problem has not yet been raised. 

The main points discussed in this paper are the following: a) We stress the very 
fact that a correct use of the variation method in the self-consistent field approxi- 
mation requires a careful definition of the quantity that must be minimized. 
Moreover ,  a rigorous analysis of the interactions between the various parts of 
the physical system of interest will be of value for interpreting each term of the 
Fock operator.  It is naturally expected that the answers given to these questions 
will be in mutual close agreement in such a way that the theory displays a full 
internal coherence, b) We examine critically the current continuum solvation 
models based on the RF Theory within the SCF method of calculation and more 
particularly that using the Generalized Born (GB) formula, c) We discuss the 
theoretical problems related to an extension of the GB formula which is able to 
account for the desolvation effects due to the specific neighborhood of the atomic 
centers of a solvated species and we propose a solution that maintains the internal 
coherence of the theory. 

2. Energetic aspects of the problem 

Let us start by defining the solvation energy [17]. We consider a system formed 
by an isolated solute molecule and by an assembly of interacting solvent molecules. 
In the initial state, the solvent molecules are in thermal equilibrium at a given 
temperature  T. Then, through an isothermal process, we introduce the solute 
into the solvent: a new equilibrium is attained corresponding to the final state. 
The energy variation of the whole solute-solvent (s-S)  system between the initial 
and the final state, which is generally revealed by heat liberation, is called solvation 
energy. 

Since the process considered is an isothermal one, we can immediately conclude 
[18] that the solvation energy is the difference of the free energy of the s - S  

system between both equilibrium states. In the final state, the free energy can 
be partitioned according to 

A = E~ + AE~ + A S  + A A S  + E ~-s (1) 
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where E s is the energy of the isolated solute molecule, A s is the free energy of 
the pure solvent at the temperature T, E s-s is the s - S  interaction energy and 
AE s and A A  s are respectively the solute and the solvent polarization energies. 
Thus, we find for the solvation energy 

E s ~  = AE* + A A  s + E ~-s (2) 

When the solute is unpolarizable, the energy variation is reducible to the last two 
terms of Eq. (2) and it has been called "insertion energy" [17, 19]. In this 
particular case, and only if the electrostatic s - S  interactions are taken into 
account, it can be shown that the following relation holds 

A A  s = - E ~ - S / 2 .  (3) 

This can be done by statistical calculations [17, 18] when the solvent polarization 
is temperature dependent (for instance, when the solvent is formed by unpolariz- 
able molecules with permanent dipole moments so that A A  s is entirely determined 
by the variation of the solvent orientation). However, relation (3) is also valid 
when the coupling with the thermostat can be completely neglected [20] (that 
is, when the polarization results from the displacement of the solvent charges so 
that A A  s is the variation of the potential energy related to an internal force 
constant). Accordingly, the insertion energy can be written in both cases [2, 21-23] 

E xnS = ES-S /2 .  (4) 

In the case of a polarisable solute, the solvation energy is obtained by adding 
the solute polarization term to the insertion energy according to Eq. (2) [9]. 

In order to illustrate these preliminary theoretical considerations, we will verify 
the main results in the particularly simple case of a single uniformly charged 
sphere immersed in an homogeneous dielectric medium with a dielectric 
constant e. 

The work necessary for charging a sphere S(0, a) of center 0 and radius a, with 
a charge Q can be calculated quite easily by simple electrostatics. The difference 
of the work respectively calculated with and without solvent gives the well-known 
Born formula for the solvation energy [24] which is, in fact, the insertion energy 
since the sphere is unpolarizable 

E~ . . . .  (1 - l / e ) .  OZ/2a .  (5) 

On the other hand, it is well established that the solvent polarization may be 
reduced to the creation of a polarization charge O~o~ uniformly distributed at 
the surface of S(0, a). The determination of such a polarization charge can be 
achieved by a classical procedure from which [3] 

OpOl= - ( 1  - I / e ) .  O. (6) 

Thus, the electrostatic interaction energy between the charge Q (which may be 
associated to the solute) and the polarized medium (assimilable to the solvent) 
is given by 

E~ -s = Q .  V R ( Q )  = --(1 -- l / e ) .  Q 2 / a  (7) 
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where 
R pol 

v ~  ( o )  = �9 (8 )  Q~ / a = - ( 1 - 1 / e )  Q/a  

is the so called RF potential due to the solvent polarization. 

By comparing Eqs. (5) and (7), we verify the relation (4) between the insertion 
energy and the s-S electrostatic interaction energy. 

3. Self-consistent field theory of solvent efiects 

In the frame of the RF theory, the electrostatic interaction energy between a 
solute molecule and the solvent is a function of the one particle density matrix 
P of the solute. Thus, we can write 

E~-S(P) = ~, Z,(  V~(P)),  - T r  P. V~(P) (9) 
I 

where Z t  is the nuclear charge on the center I of the solute molecule, V~(P) 
is the RF potential operator  and e is the solvent dielectric constant. 

If we denote by El(P) the Fock operator  of the isolated solute molecule, it seems 
natural to define the effective Fock operator  as 

F~(P) = F~(P) - V~(P). (10) 

In this way, we simply express that each electron of the solute molecule which 
is already submitted to the action of the nuclei and of the other electrons, lies 
in the potential field created by the polarized solvent. 

Another  means for deriving the expression of the effective Fock operator  is to 
seek the minimum of the s-S free energy defined by the Eq. (1) through the 
variation method. Considered as a function of P, this energy can be written 

At  (P) = Es(P) + E[-s(p)/2 + A s (11) 

where A s is independant of P. 

In the frame of the self-consistent field approximation, the minimization of At  (P) 
is achieved by varying P under the constraint 

p2 = 2 P  (12) 

which insures that we restrict the search to a subspace of one particle density 
operators that can be represented by a single closed-shell Slater determinant. 
This condition may be taken into account by using the Lagrange multiplier 
technique, setting that the first variation of the functional 

J~ (P) = At (P) + Tr  A(P 2 -  2P) (13) 

must vanish. One gets [25] 

6J~(P) = T r  (OAdOP+AP+PA-2A)"  8 P = 0  (14) 
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and taking into account that the variation 6/~ is arbitrary, we obtain after 
elimination of the Lagrange multiplier matrix A 

[OAJOP, P] = 0. (15) 

This last relation, together with the condition (12) forms the well-known system 
of Hartree-Fock equations: the solution of these equations is usually obtained 
by solving the pseudo-eigenvalue problem for the effective Fock operator 

Fr (P) = OA~/OP (16) 

relative to the solute molecule in the field of the polarized solvent. It can be 
verified that in vacuum (i.e. when AI(P) = Es(P)) the formula (16) leads to the 
usual expression of the Fock operator for the isolated solute molecule. 

By using the expressions (11) and (16) we obtain 

F~(P) = FI(P) +�89 oP). (17) 

We see that this last expression of the effective Fock operator, derived by 
application of the variational method, is identical with that of Eq. (10), obtained 
by physical arguments, if and only if 

V R (P) = -�89 ~-s/OP). (18) 

Taking account of the Eq. (9), this condition can be written as 

vR(p) = --(Y Z,'O( vR(p)), /OP-Tr P.O vR(p)/oP]. (19) 
\ i  / 

4. Applications 

A usual simplification in the treatment of the s-S interaction is to consider that 
the solute molecule can be represented by a set of so-called net charges Oi which 
are the sum of the nuclear and electronic charges of each atomic center/. In this 
case, the s-S electrostatic interaction energy is given by an expression like 

E s - s  (P) =2 Q~(P)" (vR(p)), (20) 
I 

where the RF potential can be linearly expanded in terms of the net charges 

( v f ( P ) ) l = E  Oj(P) R �9 (c~)n.  (21) 
J 

Having in mind that O/OP=-O/oQ, we may replace the condition (19) by 

( Vff(P))I = Y~ Qj(P). o( V~(P))JoQ1. (22) 
J 

For instance, in the Kirkwood's cavity model [26], one considers net point charges 
localized inside a sphere S(0, a) within an homogeneous dielectric medium 
simulating the solvent: the theory leads to the following expression for the 
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coefficients 

(cR)Ij = 1 ~  ( l+  1)(1 -- e) {rir1~ t 
a i e( l+l)+l  \a2,l Pl(cOsOIj) (23) 

and it is easy to make sure that the condition (21) is satisfied. 

Let us also mention that in calculations by semi-empirical methods of Quantum 
Chemistry a useful approximation is to consider the coefficients as adjustable 
parametric functions. Thus, in the frame of the CNDO/2  parametrization, one 
defines 

R (c~)~ = - (1  - l / e ) .  3/,, (24) 

where the y,j are the electronic repulsion integrals and, taking account of Eqs. 
(6) and (21) we obtain 

(vR(p)),  = pol Z (Q~ (P))J" 3',J. (25) 
J 

Through the use of Eq. (20) we get 

E : - s ( P ) = - ( 1 - 1 / e ) ' ( ~  Q,(P)'Qj(P)'y, j)  (26) 

and Eq. (26) leads to the GB formula [27-30] previously used by many authors. 
Here again, the condition (22) is satisfied. However, one may wonder that such 
a result can be derived for an expression of the interaction energy which has 
been empirically established, in contrast with the Kirkwood's model where this 
energy was rigorously derived by electrostatic laws. In fact, the symmetry property 
of the coefficients (cR)xj, as defined, for instance, in Eq. (23), suffices to entail 
the internal coherence condition (19). This is also the case for the coefficients of 
Eq. (24) if we suppose that the repulsion integrals are also symmetric. If the 3qJ 
were dissymmetric, a physically senseless additional term would appear in the 
effective Fock operator expression derived by means of the formula (17). This 
difficulty will generally arise for an arbitrary empirical choice of the s-S interac- 
tions as we shall see below. 

5. Extension of the generalized Born formula 

In order to take into account the steric inhibition to solvation due to the specific 
neighborhood of each atomic center of the solvated molecule, it has been recently 
proposed to replace the definition of the polarization charges, given by Eq. (6), 
by the following one [15] 

( Opol(p))j = aj(e)" Qj(P) (27) 

where oO(e) is a function of the dielectric constant characteristic of the atomic 
center J. However, if one adopts such an expression for the polarization charges 
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the condition (22) is no longer verified because in general 

~i(~)~,~ ~ ~(~)~I, (28) 

and then the coefficients R (c~)~ are not symmetric. 

A consequence of this inegality is that the effective Fock operator,  calculated by 
the variation method, differs from the physically deduced one by a corrective 
term which is meaningless from a physical viewpoint. 

To remove this difficulty, we propose to retain the "ansatz" (27) and to define [31 ] 

a j ( s )  = - ( 1  - l i e ) .  ( l - b )  (29) 

where fj  is a parameter  characterizing the neighborhood of the center J ;  but, in 
order  to maintain the internal coherence, we write the RF potential as 

( V~(P))I = pol Z (o .  (P)),. 37i, (30) 
J 

where the dissymmetric s-S interaction matrix 37 is related to a symmetrical one 
vby 

37~j = (1 - f ~ ) .  "/1~. (31) 

With these assumptions, it can be easily verified that the coefficients R ( c , ) u  are 
symmetric so that the condition (22) is necessarily satisfied. 

Unfortunately,  the introduction of the neighborhood factors f l  raises a new kind 
of problem. In effect, it is generally accepted that charged particles do not interact 
between themselves when they are immersed in a highly polarizable solvent [32]. 
This suggests that the polarization charge induced in the solvent around each 
ionic particle is exactly the opposite of the ionic charge so that the ion screened 
by its polarization charge behaves like a neutral particle. As expected, Eqs. (27) 
and (29) show that this is exactly the case of a one center ion (for which the 
factor f vanishes). For many center ions however the factors f have nonvanishing 
values and it is necessary to modify our scheme in order to preserve the electro- 
neutrality in highly polarizable solvent. 

To do that it is convenient to consider that each polarization charge is a sum of 
two terms [31] 

(Q~o~(p))~ = (,Q~Ol(p)), + (eQ~l(e))  ' (32) 

where 

(iQ~Ol(p)), = - ( 1  - l / e ) .  (1 -fz).  Q~(P) (33) 

and 

(~Q~~ = - ( 1  - l / e ) . f , .  QI(P). (34) 
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This entails 

lim ((OP~ + Oz(P)) = 0 
e ---~ oo 

so that the electroneutrality condition is satisfied for the whole solute. 

The reaction field potential  at the center I is now a s u m  of two terms 

( vR(  p) )~ = (~Vf ( P) ) ~ + (~vR(p) )• 

(35) 

[ i ( ~ p o l ( p , c ~  i ..[_ e p o l  e 
= E ~  ~ ~ JJJrIJ E ( O ~  (P)) j3 ' I j  

J J 

where we have introduced the interaction integrals defined by 

~e,~ = ( 1  - f ~ ) .  ~,~ 

and 

(36) 

(37) 

e'}/1J -~" f I  " ]/IJ. (38) 

The s-S interaction energy can be written 

E~-S(P) = E Or(P)" (~V~(P) + eVy(P))~ 
t 

and consequently, according to Eq. (4), the insertion energy is given by 

(39) 

E~s(P)=- �89  ~ E  O~(P) .Oj (P) .TH.(1- ( f1+f j -2 f z f j ) )  (40) 
1 Y 

We remark  that this expression contains a first term which is the G B  formula 
and a corrective term depending on the neighborhood factors. If we suppose that 

f j - < l ;  YJ  (41) 

the corrective term has a sign opposite to that of the GB-l ike  term so that it can 
be assimilated to a desolvation contribution. As expected, this desolvation term 
disappears when the distances between the atomic centers are larger than overlap- 
ping ones (i.e. when fl  = 0, V J) .  

Finally, if we restrict the variation of the factor f to the interval (0, 1/2) Eqs. 
(37) and (38) give 

'yiJ >- eYIJ (42) 

e p o l  
which implies that (iO~o~(p))j is closer to the J -center  than ( O~ (P))j. Thus, 

e p o l  (iO~~ can be considered as an internal polarization charge whereas ( O~ (P)) 
is an external one. We deduce that, f rom a physical point of view, the desolvation 
appears  to be the consequence of a polarization charge transfer f rom an internal 
to an external solvation shell, in agreement  with the desolvation mechanism 
proposed by Grunwald [32]. 
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6. Discussion 

Let us first emphasize the necessity of having a precise definition of the solvation 
energy. As shown in Eq. (2), this quantity is obtained by adding the solute 
polarization contributions, due to the nuclear or electronic rearrangement of the 
solute in the presence of the solvent, to the insertion energy. The physical sense 
of the insertion energy is clearly displayed by statistical thermodynamics: it is 
the free energy variation of the s - S  system, maintained at a given temperature, 
when the polarized solute is transferred into the solvent with fixed nuclear 
configuration and electron cloud. It can simply be calculated through the Eq. (3) 
from the s - S  electrostatic interaction energy. 

Although this result is not original it is worth emphasizing because of the frequency 
in which incorrect formulations occur in recent papers, especially when the solvent 
effects are incorporated in quantum mechanical calculations within the SCF 
approximation. Errors arise mainly from a misinterpretation of the insertion 
energy which is often taken as an electrostatic s - S  interaction energy whereas 
it also contains the solvent polarization energy, as shown in Eq. (2). 

This is the case, for instance, of the Klopman's solvation model [30], later 
incorporated into the SCF MO formalism by Germer [6, 7] and used by many 
authors [12, 33-37]. In these works it is assumed that the s -S  interaction energy 
is approximated by the GB formula: this error causes the introduction of a 
spurious �89 factor in the expression of the RF potential and leads to the incorrect 
effective Fock operator 

(F.(P)).~=(Fl(P)).~+n(1-1/e) ~ Oj(P)'3~,I6~; I~I  
J 

(43) 

where n = 1/2, while the correct formula is obtained by setting n = 1, according 
to Eqs. (10), (21) and (24). The implementation of the solvaton model [13], 
introducing the interaction of the solvatons among themselves, is also inappropri- 
ate because the relation (3) is not satisfied. In our opinion, none of the analyses 
published up to now [4, 14, 37, 38] have given a satisfactory explanation of these 
inconsistences. 

We have verified that the minimization of the free energy of the whole s - S  
system in the frame of the RF theory allows obtaining an expression of the 
effective Fock operator of the solute which contains an additional term represent- 
ing the RF potential due to the polarized solvent [39]. Although it leads to 
identical results, we think that this formulation of the problem is more direct 
and physical than that given on the basis of the formal theory of non linear 
Hamiltonian [9, 40, 41]. The main point, however, is that the minimization of 
the enthalpy [15], instead of the free energy, is a physically unsound procedurel 

The derivation of the effective Fock operator by the formula (16) confirms that 
many works are theoretically inconsistent [6, 12, 13, 33-37] and that the variation 
method has not been correctly handled [7]. We also point out that Eq. (16) gives 
expressions of the effective Fock operator which differ from that given in some 
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previous works: for instance, with the original notations used by the authors, we 
obtain [22] 

(F~(P)),~=(FI(P)),~-~ O](P) ~ (l+ l)(1-e) ( 1 ) 
t=0 e(l+l)+l ~ y~)~,~ (44) 

instead of Eqs. (26, 27) of Ref. [11], and 

co l 

(F~(P)),~=(FI(P)),~+ E • (Rrf)(g[Sfl v) (45) 
l = 0  m = - - I  

which is at variance with Eq. (15) of Ref. [10]. It must be noted, however, that 
this last result has been modified in further publications [42]. 

Above all, we stress the fact that both methods we have described above for 
obtaining the effective Fock operator (see Eqs. (10) and (16)) can give different 
results when arbitrary approximate formulations of the RF theory are used, as 
it is often the case in semi-empirical calculations. We have given the conditions 
under which the internal coherence of the theory can be restored. This problem 
seems to have been ignored in some previous work using the Friedman approxi- 
mate RF potential [14] or an extension of the GB formula [15]. 

At last, we have discussed the difficulties which arise when we try to extend the 
GB formula to account for the effects of neighborhood upon the s01vation of 
each atomic centers of the solute, while preserving the internal coherence of the 
theory. We have shown that the introduction of a specific neighborhood factor 
in the definition of the polarization charges must be necessarily followed by a 
dissymmetrization of the s-S interaction integrals. Moreover, our solution 
naturally leads to the appearence of a corrective desolvation term in the total 
s-S free energy, which is connected with the diminution of the solvation 
phenomena when charged centers approach within overlapping distances. 

This model seems very promising in studying several problems related to Chemical 
Reactivity where desolvation effects may be important. Preliminary results con- 
cerning the solvent effects upon the formation of ionic pairs in the dissociation 
reaction of some simple systems are encouraging and illustrative of the relevance 
of the model: complete calculations will soon be submitted for publication. 
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